U-Euclid

From Wikipedia
Jump to: navigation, search

UEuclid, ngamanye amaxesha ubizwa ngokuba nguEuclid wase Alexandria xa esohlulwa kuEuclid of Megara, waye engumpondo zihlanjiwe wezibalo wesizwe samaGrike, wayesoloko ebizwa ngokuba ng"utata weGeometry". Wayesebenza ngakumbi eAlexandria ngexesha lokuphatha kwePtolemy I (ukususela ngo323 ukuya ku283 BC). Imiba yakhe yeminye yeyona misebenzi yakhe yanefuthe kwimbali yezibalo, esebenza njengeyona ncwadi yesikhokhelo xa kufundiswa izibalo (ingakumbi igeometry) ukususela kulaa mhla wokupapashwa kwayo kude kuye kutsho ekupheleni kwenkulungwane ye19 leminyaka okanye ukuya kuthi xhaxhe phaya ekuqaleni kwenkulungwane yeminyaka yama-20. [1][2][3] Kwizinto ezibayingqokolela, lo kaEuclid wenza imithetho ekuthiwa namhlanje yiEuclidean geometry eyisusa kwingqokolela encinane yeeaxioms. U-Euclid ubhale imisebenzi kwiperspective, iconic sections, ispherical geometry, inumber theory kunye nerigor.

U-Euclid ligama eliguqulelwe esiNgesini libe lona iligama lesi[ulwimi lwesiGrike|Grike]]

Ubomi bakhe[tshintsha | edit source]

Very few original references to Euclid survive, so little is known about his life. The date, place and circumstances of both his birth and death are unknown and may only be estimated roughly relative to other figures mentioned alongside him. He is rarely mentioned by name by other Greek mathematicians from Archimedes onward, who usually call him "ὁ στοιχειώτης" ("the author of Elements").[4] The few historical references to Euclid were written centuries after he lived, by Proclus c. 450 AD and Pappus of Alexandria c. 320 AD.[5]

U-Proclus wamazisa uEuclid kancinane ephikisana neeElements. NgokukaProclus, uEuclid waaxheshwa nguPlato kwaye weza nazo eziElements, esenza umsebenzi wokuqala ngabanye abantwana bakaPlato (ingakumbi iEudoxus yeCnidus, iTheaetetus kunye noPhilip kaOpus.) UProclus ukholelwa ukuba uEuclid akamncine kakhulu kwaba, kwaye ubemelwe kukuba wayephila ngexesha lePtolemy I kuba wayekhankanywe nguArchimedes (287–212 BC). Nangona ukukhankanywa kukaEuclid nguArchimedes bekubonwa njengeinterpolation ngabahleli bosebenzi wakhe bakamva, isekho inkolo yokokuba uEuclid wayibhala imisebenzi yakhe phambi kwale kaArchimedes. [6][7][8]

Kamva uProclus waphinda wabalisa ibali elithi, wayesithi akubuzwa uPtolemy I ukuba ingaba yayikhona indlela eqhuphayo yokufunda igeometry kunaleyo yee-Elements zikaEuclid, "u-Euclid waphendula wathi akukho ndlela itshuqayo eya kwageometry."[9] This anecdote is questionable since it is similar to a story told about Menaechmus and Alexander the Great.[10]

Umntu onolwazana ngoEuclid, nguPappus, ukhankanywa ngokufutshane kwinkulungwane yesine yeminyaka apho athi uApollonius "wachitha ithuba elide kakhulu ehlala nabantwana bakaEuclid eAlexandria, kulapho wathi wafunxa ulwazi oluphangaleleyo ngenzululwazi yamathamb'engqondo" c. 247–222 BC.[11][12]

Amagqabantshintshi ngobomi bukaEuclid anikwe ngababhali bamaArabhu, umzekelo, bekhankanya, a idolophu awazalelwa kuyo iTyre. Le ngxelo ngobomi bakhe ithathwa ngentsomi egqibeleleyo. [7]

Kuba ukunqongophala kolwazi ngobomi bakhe kuyinto engaqhelekanga ngakumbi ngelo xesha (kuba kaloku ulwazi oluphangaleleyo ngobomi bezinye iingcali zezibalo lwaluthe saa lufumaneka nkqu nezazikho zibalasele phambi nasemva kwexesha likaEuclid), zikho ezi iingcali zithi lo kaEuclid wayengabalulekanga ezimbalini kakade, kwaye imisebenzi yakhe yayibhalwe liqela leengcaphephe zezibalo esebenzisa igama elithi Euclid gama elo livela kwimbali engoEuclid waseMegara (thelekisa uBourbaki). Kodwa ke, le ngxelo ayamkelwa ngokupheleleyo zezinye iingcali kwaye buncinane kakhulu ubungqina ngalo mbono. [7][13]

  1. Ball, pp. 50–62.
  2. Boyer, pp. 100–19.
  3. Macardle, et al. (2008). Scientists: Extraordinary People Who Altered the Course of History. New York: Metro Books. g. 12.
  4. Heath (1981), p. 357
  5. Joyce, David. Euclid. Clark University Department of Mathematics and Computer Science. [1]
  6. Proclus, p. XXX
  7. 7.0 7.1 7.2 Euclid of Alexandria
  8. The MacTutor History of Mathematics archive.
  9. Proclus, p. 57
  10. Boyer, p. 96.
  11. Heath (1956), p. 2.
  12. chmarge.html "Conic Sections in Ancient Greece". http://www.math.rutgers.edu/~cherlin/History/Papers1999/s chmarge.html.
  13. Jean Itard (1962) Les livres arithmétiques d'Euclide